In social media analysis, one critical task is detecting burst of topics or buzz, which is reflected by extremely frequent mentions of certain key words in a short time interval. Detecting buzz not only provides useful insights into the information propagation mechanism, but also plays an essential role in preventing malicious rumors. However, buzz modeling is a challenging task because a buzz time-series usually exhibits sudden spikes and heavy tails, which fails most existing time-series models. To deal with buzz time-series sequences, we propose a novel time-series modeling approach which captures the rise and fade temporal patterns via Product Life Cycle (PLC) models, a classical concept in economics. More specifically, we propose a mixture of PLC models to capture the multiple peaks in buzz time-series and furthermore develop a probabilistic graphical model (K-MPLC) to automatically discover inherent life cycle patterns within a collection of buzzes. Our experiment results show that our proposed method significantly outperforms existing state-of-the-art approaches on buzzes clustering.